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A solution of the problem of feedback control of the motion of a point on a plane is presented. The equations of the control 
programme (the objective) are set up as a system of differential equations with a given set of singular trajectories in the domain 
of admissible positions of the controlled point, as well as a given topological structure of the partition into trajectories. These 
equations define the vector field of velocities of the programmed motions of the point and are used to find the corresponding 
control forces. © 2005 Elsevier Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

The main operation when solving problems in the mechanics of a controllable body is forming the 
objective of the control, which presupposes setting up a system of equations (both finite and differential) 
of the mechanical constraints whose realization will guarantee that the motion of the body will have 
the required properties. These equations are used to obtain the control forces by solving the corres- 
ponding inverse problem of dynamics [1]. As the techniques for solving inverse problems of dynamic 
have developed, the number and diversity of the required properties of the motion has increased. In 
classical problems for a point mass, these concerned the existence of a given trajectory of the point, or 
the fact that the trajectory belonged to some family of curves (the problems of Newton, Kepler, Bertrand, 
Meshcherskii, and Zhukovskii [2, 3]), and for a mechanical system, the existence of given particular 
integrals of the equations of motion (the problems of Ermakov, Suslov, Goryachev, and Chaplygin [2, 
3]). The properties of the motions are described more fully by differential equations. They may be used 
to formalize information about both individual trajectories and manifolds of such trajectories, as well 
as the nature of their stability, attraction domains, and other properties. Methods for formulating systems 
of differential equations that have a given family of singular integral manifolds and given properties 
of partition of the space of variables into trajectories [4-7]$ provide the mathematical basis for the 
modern approach to solving inverse problems of dynamics in the most general settings [8-10]. In this 
paper, the control of the motion of a point mass will be synthesized using a method described in [11] 
for constructing systems of equations of the form 

.ic = X ( x ,  y ) ,  29 = Y ( x ,  y )  (1.1) 

of class C1(~2), which have given trajectories F/: coi(x,y) = 0 (i = 1 . . . .  , n ) ,  among which there may be 
non-closed curves, limit cycles, simple equilibrium states (foci, nodes or saddle points) and compound 
equilibrium states, and for which the partition of the domain £2 of the (x, y) plane into trajectories has 
a given structure. The essence of the method is to reduce the solution of the problem to constructing, 
first, two orthogonal vector fields of directions of comparison corresponding to a set of given trajectories 
of the desired system of equations (1.1), and, second, two functions which are scalar products of the 
vector of the right-hand sides of the desired system of equations (1.1) and the vectors of these fields 
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of comparison directions, and which correspond to the given topological structure of the partition of f2 
into trajectories. The theory underlying these constructions consists of the fundamental assumptions of 
the qualitative theory of systems of equations of type (1.1) of class Ca [1, 2] and modifications of the methods 
of Yerugin [14] and Frommer for investigating the singular points of an ordinary differential equation [15]. 

2. F O R M U L A T I O N  OF T H E  P R O B L E M  

It is required to find a force under whose action the motion of a point M of mass m in a domain f~ has 
the following properties. 

PropertyA. The point moves from an initial positionAl(0, 0) (Fig. 1) to a final positionA3(1, 1) without 
leaving the domain f~ bounded by the curves 

O)l=.X = O, O ) 2 ~ Y - X  3 = 0, 013=y-1  = 0 (2.1) 

Property B.  The point has zero velocity at its initial and final points, where its trajectories touch the 
curve c02 = 0 (Fig. 1). 

A prototype of such a point would be, in particular, the centre of mass of the grip of a robot manipulator 
or any of its modules. 

3. S O L U T I O N  OF T H E  P R O B L E M  

We will begin by formulating a programme for the motion of the point M as a system of kinematic 
equations (1.1), to which the topological structure of the partition of ~2 into trajectories, shown graphically 
in Fig. 1, corresponds. To do this, the steps described below are taken. 

3.1. Construction o f  the vectors o f  comparison directions. The vectors n and z of the auxiliary fields 
of comparison directions are used as the vectors of the local basis in which the direction of the vector 
of right-hand sides of the desired system (1.1) is given. These vectors, corresponding to a given set of 
curves {Fi: COl = 0 [ i = 1, 2, 3}, are given the following properties 

(n .  grad co/)[rl = 0, i = 1, 2, 3, n • 0 and ny > 0 in the domain f~\(A1 ~)A2 ~A3)  

"C x = ny, "Cy = -nx, 

where A1, A2 and A 3 are equilibrium points of system (1.1). 
To construct such vectors n and % we use the vectors [11] 

n I = (1,0),  n 2 = (-3x2,1),  n 3 = (0,1) (3.1) 

corresponding to curves (2.1), and the vectors 

m I = (--xy, X2), m 2 = (-x(y- 1), x2),  m 3 = ( - ( x -  1 ) ( y -  1), ( x -  1) 2) (3.2)  

corresponding to the equilibrium statesA1, A2 andA3, Throughout, the subscripts i, j and k take values 
1, 2, 3, unless otherwise states. 
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We define 

~ ~ki - = E H o,?+ 2 > , = a  l,o, 
i j , j * i  k i 

(3.3) 

where the arbitrary non-negative coefficients ~/(x, y) and gk(X, y) and arbitrary natural numbers ~ij and 
~ki are chosen so that the following conditions are satisfied. 

1. In a fairly small neighbourhood of the pointA~ the term gkmkl-~@ ~ is the principal term of (3.3) 
(ensuring the existence of only the required exceptional directions of the equilibrium state Ak of the 
vector field n), while near the curve Fi the principal term is the corresponding term )~niI-~,j, im~ q (making 
it possible to guarantee the desired type of separatrix Fi). 

2. In a fairly small neighbourhood of the curve Fi the term )~iui~.,j ~ im~ q corresponding to that curve 
is the principal term of (3.3). 

Using the notation degAf(x, y) for the least degree of the terms in the expansion o f f  in a series of 
powers ofx  - a andy - b at the point A(a, b), we define numbers gik = degA~(~o3i/OY) for i ~ lAg = 
{i: mi(Ak) = 0} and note that, if )~i, gg, % and lSki satisfy the inequalities 

degA,(~i) + ZO~ijdegAk(O)j) + Iltik > ~k + degA,(gk) + 2 
J 

degAk(gm) + Z~mjdegAk(Olj) > ~k + 2 
J 

the conditions 1 and 2 will be satisfied. 

3.2. Analytical definition of  the structure of  the phase portrait. To express properties A and B in 
mathematical form, we use the scalar products of the vector P = (X, Y) of the right-hand sides of the 
desired system of equations (1.1). and the vectors n and 7, 

F 1 = nxX+ n y Y ,  F 2 = "¢x X + ' c y Y  (3.4) 

The functions Fa and F2 corresponding to the given set of singular trajectories (2.1) and the given 
topological structure of the partition of f2 into trajectories (Fig. 1) are expressed as products 

F, = ~ l H a ) ~  ~, F 2 = { z H N ~  j (3.5) 
i j 

where ai and 6~j are arbitrary natural numbers, and ~1 = ~1( x, Y), ~2 = ~2( X, Y) and 63j = 63j(x, y) are 
arbitrary functions of the coordinates x and y that satisfy the condition 

2 2 
F 1 +F2~:0  in the domain f~\(A I kJA2uA3) (3.6) 

The functions {1, ~2 and 6~j are selected in two steps. At the first step one establishes the structure 
of these functions in the neighbourhood of each of the equilibrium stateAk. That is done using theorems 
from [11], which contain algorithms for constructing these factors and sufficient conditions for the desired 
system of equations to have the given local topological structure in the equilibrium state specified. The 
proofs of these theorems are based on Frommer's method for investigating the singular points of 
differential equations [15]. The functions thus obtained, {1, {2 and &j, are used at the second step to 
form the final expressions of the functions F1 and F2, corresponding to which we have a system of 
equations 

2 2 
= (Fln x + F2ny)/(n 2 + n~), ~ = (F lny -  F2nx)/(n x + ny) (3.7) 

for which the partition of the domain ~2 into trajectories has the given topological structure. 



176 S.V. Volkov 

Step 1. Constructing of the F-functions of the equilibrium states. 
The neighbourhood of the pointAl(O, 0). The curve 011 = 0 is a separatrix of hyperbolic type of the 

equilibrium state A1, while the normal domains of the exceptional direction y = 0 of A1 are normal 
domains of mixed type (Fig. 1). Based on Theorems 5 and 11 of [11], we define 

2 -- 4 
FI = ~1101101201v11, F2 ----. ~2101101,O21(X + y 2 ) ,  ~11'~21 > 0  (3.8) 

where 

9 1 = x+y, 01vll = x+41Y n~, 01021 = x+42Y n2, 111 = 112 = 3 

and the quantities 41 and 42 a r e  determined from the condition that the function 

~lk(1) + ; l ) ( b l  -- C1 I)3) + ~2k(1) + 42)(3bl - 2Cl 1)3) 

has no zeros. Throughout this section, a~, b k and Cg denote the coefficients of the principal terms in the 
expansions of the expression 

E ~'iglix 1--I °tiJ ¢tq 01J ' E ~in iy 1-I 01J ' " k l -I  o1~u 
i j,j~i i j,j~i i 

which occur in the expressions for the coordinates of the vector n, in powers ofy -Yk in the neighbourhood 
of the equilibrium stateAk along the directionx -xk = 0 (for more details see [11]). In particular, setting 

41 =- (b l /C l )  113, 42 = -(3bl](2Cl)) 1/3 

we obtain the functions 

2 1/3 3 
Fl = ~11011012[ x -  (b1/Cl) Y ], ~n > 0 (3.9) 

F2 = ~21 [x-  y3(3bl/(2Cl))l/3](x 4 + y2)91, ~21 > 0 (3.1o) 

corresponding to which is the system of equations (1.1) with the given local topological structure at A 1 
(Fig. 1). 

The neighbourhood of the point A2(O, 1). The curves 011 = 0 and 012 = 0 are separatrices of hyperbolic 
type of the equilibrium state A2 (Fig. 1). In the neighbourhood of that point, relying on Theorems 1 
and 11 of [11], we define 

F1 = ~12011013[ X - (b2[c2)l13(y - 1)3], ~12 < 0 (3.11) 

F 2 = -~22[x-  (3b2/(2c2))l/a(y- 1)319210122 , ~22 > 0 (3.12) 

where 

921 = x + y - 1 ,  922 = x - y + 1  

Corresponding to these functions F1 and F2 there is the system of equations (1.1) with the required 
local topological structure A 2 (Fig. 1). 

The neighbourhood of the point A3(1, 1). The curve 013 = 0 is a separatrix of hyperbolic type, while 
the curve mE = 0 corresponds to a normal domain of mixed type of the equilibrium state A3 (Fig. 1). 
On the basis of Theorems 3, 5 and 11 of [11], we define in the neighbourhood o fA 3 

2 
El  = ~1301201301v31, ~13 < 0  (3.13) 

F 2 = ~z3[(x- 1) z + ( y -  1)4]{[y - 1 - 3 ( x -  1)] 2 + ( x -  1)4}, ~23 > 0 (3.14) 
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where  

0)o13 = X-- 1 + ~I(Y-- 1) n ' '  1"11 = 3, 41 = - a 3 / c 3  

Corresponding  to these functions F 1 and F2 is a system of  equat ions  (3.7) whose  equi l ibr ium point  A 3 
has the  given local topological  s t ructure  (Fig. 1). 

T h e  construct ion of  the vector  n is comple ted  by choosing the values of  the arbi t rary factors  X/, gk 
and t~ij, taking the  principal  t e rms  in the expansions of  the functions F1 and F2 (3.9)-(3.14) at the points  
Ai into account.  In  part icular ,  we set  

0,4,4 4,0,4 4,4,0 
n = 3.10nlLs, 8, 0 + ~'20n2L4, o, 4 + ~30n3Lo, 4, 4 + 

+ ~ l O m l  L~,, 2,4 2,4,2 .4 ,2 ,2  2, 4 + ~20mzL2,  o, 4 4- [.I.30m3 L2, 4, 0 

where  

"el' S2' S3 Sl s2 s3 Pl P2 P3 
Zpvp2,p3 = 0)1 012 0)3 F1 r2 r3 , 

and ~-i0 and gi0 are arbi t rary constants.  

2 
r i = ( x -  x i )  2 + ( y -  y i )  2 

Note  that  in the ne ighbourhood  of  A1 along the direction x = 0 

T0,4,4 
10nlxL8,8,0 = ~10Y 12+ o(y12) ,  

H e n c e  it follows that  

bl = ~,10, 

In  the  ne ighbourhood  of  A2 along the direct ion x = 0 

~'lonlxL~', 4'4 ~ ' l o ( Y -  1) 12 4,0 = + o ( ( y -  1)12), 

Thus  

0,2,4 
gloLo, 2,4 = 4P.lox2y 2 + o ( x 2 y  2) 

C 1 = 4kl, lO 

y0,4, 2 
~t20L2, 0, 4 = ~ 2 0 ( Y  -- 1 )2 + o ( ( y  - 1 )2) 

b2 = ~'10, c2 = ~20 

In  the ne ighbourhood  o f A  3 along the direct ion x - 1 = 0, we have 

n x = 2930(Y - 1) 4 + 4(49~10 - 3~,20)(y - 1) 8 + o ( ( y  - 1) 8) 

?'/y = 2930(Y - 1) 4 + (4~'20 + ~30)(Y - 1) 8 + o ( ( y  - 1) 8) 

in the expression (3.15), and consequent ly  

a3 = 4 (4Lm-3~ '20 ) ,  b3 = 4~'20 + ~'30, ca = 293o 

To fix our  ideas, we set 

~'10 = ~'20 = ~'30 ---- 2, 

and we obtain  

~10  = 1/4, g2o = 1, g3o = 1/2 

(3.15) 

(3.16) 

b I = b 2 = 2, c 1 = c 2 = c 3 = 1, a 3 = 8, b 3 = 10 

Af te r  these quanti t ies have been  subst i tuted into relat ions (3.9)-(3.14),  we find the funct ions F1 and 
F2 cor responding  to the given local topological  s tructures of  the equi l ibr ium states A i 
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~- 2, ~1/3 3, { FI = ~ll(-°lm2[ x - Z  Y ), ~11 > 0  
A 1: 1/3y3)(x 4 

F2 ~ 2 1 ~ l ( X _  3 + y 2 ) ,  ~21> 0 

{ F1 = ~12(01(-03 Ix  - 21/3(Y - 1)3], ~12 < 0 
A2: 

F 2 ~22G)21~22[x-3113(y-1)3] ,  ~ 2 2 > 0  
(3.17) 

2 { F l = ~13(1120)3[(X - 1 ) - - 8 ( y - -  1)3], ~ 1 3 < 0  
A3: 

F 2 {23[(x-1)Z+(y-1)4]{[(y-1)-3(x-1)]2+(x-1)4}, {23>0 

where 

0)1 = x+y, ~21 = x + y - 1 ,  ~22 = x -y+ l  

Step 2. Construction of F- functions in the domain ~ as a whole. 
Using expression (3.17), we form a graphic scheme (Fig. 2) illustrating the relative positions in f2 of 

the curves at whose points the required functions F1 and F2 vanish. One of the main conditions imposed 
on these functions is that they satisfy inequality (3.6), which is equivalent to the condition that the curves 
F1 = 0 and F2 = 0 have no points of intersection in f2 other thanAi. This condition holds, in particular, 
for the functions 

2 , , , 
F1 = ~1(-01(02033f&31)310)1 0)2, ~1 < 0  

(3.18) 
- -  - -  - - ,  4 

F 2 = ~2(01 (,022(.t)V22(l) 1 r 1 [(X - 1 )2 + (y _ 1 )4] { [y _ 1 - 3(x - 1)]2 + (x - 1 )4}, ~2 > 0 

The factors m~, * m~31, 63~ are such that 
(1) the Taylor expansions of c0~ at the pointsA1 andA2 are identical, to within terms of order up to 

and including three, with the analogous expansions of the factors m.n and mu12 - x - 21/3(y - 1) 3, 
respectively; 

(2) the curve m.31 = 0 has no points in common with the domain D other thanA3, where its Taylor 
expansion has the form m'31 = (x - 1) - 8(y - 1) 3 + ... ; 

(3) the curve &~ = 0 (Fig. 2) approximates the curves c%21 and m21 = 0 at the equilibrium statesA1 
and A2, respectively. 

In particular, we set 

m, : {(y4+~)(y_l)4+E(y_l)4 + 2Jy17 4];x_z,,.,l/3y~y_3( ~)(y _ 1)3 

• =[l+28(y-1)2](x-1)-8(y 1) 3, O)~=X+3113y3(y 1) (3.19) OJV31 -- _ 

= _ 1 = 3re(y_ co* x %22 x -  1) 3 
d. 

F t = 0  
6 2 1  = 0 , , y  

\ 

tO 3 = 0  / 

F 2 = 0  ~ 
co; o 

\ 

F 2 = 0  F , =  

/ F 2 =  0 F I = 0  
/ / - -  rL \ I l l  
/ " ° h 2 = v  ",, d 
~a ', a l \  ~ 3 = 0  

{,2 I "311 , 
I l l  \ 

',o IF =0 /,'I_ F =0 
I _ I ~. I / / / ,  i F l _ 0  

i ~  I ~ / ~ , = 0  

/ ' t \  \ I X 

0 ~I = 0  

Fig. 2 
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The fact that the relative positions of these curves and the curves co i = 0 correspond to the scheme 
of Fig. 2 has been verified by constructing their graphs using the MAPLE V software package. 

Assuming that the coefficients in (3.15) satisfy equalities (3.16), we replace the coordinates of the 
vectors ni and mj by their explicit expressions (3.1) and (3.2). As a result, we obtain the final expressions 
for the coordinates of the vector n 

nx = 2L°', 48104 -- OX" 2.4/~4,, 0,4 1 .2,2,4 . . .  2,4, 2 1 4, 2, 2 0,4 - ~xYt-'o, 2,4 - x ( y  - I)L2, 0, 4 - ~(X - 1)(y - 1)L2, o, 4 

- . 4 , 0 , 4  - . 4 , 4 , 0  1 2.2 ,2 ,4  2 .2 ,4 ,2  1 1)2L4,2,2 
ny = Z L 4 , 0 , 4 + Z L o , 4 , 4 + ~ x  L,0,2,4+X L 2 , 0 , 4 + ~ ( X - -  ,4,0 

(3.20) 

Substituting these expressions nx and ny into system (3.7), together with F1 and F 2 from formulae 
(3.17) and {1 = - (  n2 + n2), {2 = n2 + n2, we find the right-hand sides of the system of equations (1.1) 
for which the partition of ~2 into trajectories (Fig. 2) has the given topological structure and which 
constitute the kinematic equations of motion of the point M. 

The correctness of the solution has been verified by graphical constructions (using the MAPLE V 
software package Release 5) of the vector fields of directions ~-, n and P(X, Y) corresponding to the 
expressions nx, ny, X and Y just found. 

4. C O N S T R U C T I O N  OF T H E  C O N T R O L S  

The system of equations (1.1), whose right-hand sides we have just constructed, defines a vector field 
of velocities of motions of the point M which guarantees that the objective of the control in the problem 
formulated in Section 2 will be accomplished. The components of the accelerations of these motions 

5( = O~XYc + OyX~9 (x ~ y, X <-~ Y) (4.1) 

are caused by the action on M of a force F(Fx, Fy): 

F x = m(OxXX+OyYY ) (x<---)y,X~->Y) 

For the practical implementation of the programmed motion of M in the domain f2, it is more 
convenient to apply a force with coordinates 

F x = m ( O x X Y C + ~ y X ~ ) + d P  x (x~-)y,X~--~Y) (4.2) 

at the point, where ~(~x,  qby) is a correcting force that reduces the measure of the deviation 
2 2 0~ = (2 - X )  + (3~ - Y) of the velocity of motion of M from the value determined by the equations of 

system (1.1). In addition, the force • should be chosen so that the system of equations 

±" = OxXYC + OyXy + ~x /m (x +-~ y, X +-~ Y) (4.3) 

has equilibrium states in the domain f~ x R  2 of the phase space (x,y,2,p) which are located only in the Oxy 
plane and which are precisely the equilibrium states of the system of equations (1.1) in the domain fL 

It follows from the expression 

( do3/dt) 1(4.3) = 2[('1C -- X ) I ~ x  + (Y  - Y ) ~ y ]  

for the total derivative of co with respect to time, evaluated along trajectories of the equations of system 
(4.3), that to tends asymptotically to zero in time if 

(i f  - X )dP  x + (Y  - Y ) ~ y  = -~'O~ C (4.4) 

where ~ is a natural number and )~ is an arbitrary non-negative function which can only vanish at the 
points where 0~ = 0. Such a choice of q~x and *y is possible. In particular, we set 

m)~0 . reX0 . . . .  
~x = ~ ( x - X ) ,  q~Y = -  2 tY-X) ,  ~,0 = const>0 (4.5) 
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corresponding to the values (y = 1 and )~ = )~0 in (4.4). It follows from the representation of system 
(4.3) in the form 

~o Yc = p, lk = OxX~ + O y X p - ~ ( Y c - X )  (x<---~ y , X  ~--~ Y, p~---)q) (4.6) 

that, if2 = ~ = t5 = 0 = 0, then necessarily X(x,  y) = Y(x ,y)  = 0. This means that there are equilibrium 
states in the domain £2 x R 2 of the phase space (x, y, p, q) only in the Oxy plane, and that these are all 
equilibrium states of the corresponding system of equations (1.1) in the domain fL The converse is 
also true: corresponding to each equilibrium state (xi, Yi) of system (1.1) in the domain f~ there is the 
equilibrium state (xi, Yi, 0, 0) of system (4.6) in the domain f~ x R 2 of the phase space. 

We will now consider the influence of the terms O~ and ~y defined by (4.5) on the structure of the 
equilibrium states Ai(xi, Yi, 0, 0) of system (4.3) in two cases. 

1. The right-hand sides of the equations of system (1.1) have the following form in the neighbourhood 
of the equilibrium state Ai(xi, Yi) 

X = a ( x - x i ) + b ( y - y i ) + o ( r i ) ,  Y = c ( x - x i ) + d ( y - y i ) + o ( r  i) 

where a, b, c and d are constants such that ad - bc ~ O. In that case, comparison of the characteristic 
equations 

x ( k ) - ( k - a ) ( k - d ) - b c  = 0, k2~(0) = 0 k -  ~(k) = 0 

of system (1.1), (4.1) and (4.6), respectively, implies that the addition of the terms q~x and ~y to the 
right-hand sides of system (4.1), first does not affect the nature of the behaviour of the projections of 
its representative points onto the plane p = 0, q = 0 in the neighbourhood of the point (xi, Yi, 0, 0) of 
the phase space; and second, it guarantees the existence of a pair of negative roots of the characteristic 
equation, corresponding to the coordinatesp and q. 

2. The expansions of the right-hand sides X and Y of system (1.1) in powers of x - x i  and y -Yi do 
not contain linear terms. In that case, system (4.6) has the following form in the neighbourhood of the 
equilibrium state Ai(xi, Yi O, O) 

~o Yc = p, t i = - ~ ( p - X )  (x<---)y,X<---) Y, pe -~q)  (4.7) 

and its characteristic equation is k2(k - 9@2) 2 = 0. This equation, and the fact that the total derivative 
dto/dt, evaluated along trajectories of system (4.7), equals -)~0to, imply that as t ~ +oo (or t ~ --oo) the 
following estimates hold 

to-  exp(-~0t), x -  t -l/n, y -  t -l/" 

where n + i is the order of the expansions of the functions X and Yin powers ofx - x i  andy -Yi. Since 
the rate at which the function co tends to zero in time significantly exceeds the rate at which the 
coordinates x and y tend to xi and Yi, we may conclude that the projections of the representative points 
of the system onto the plane p = 0, q = 0 of the phase space (x, y, p, q) behave in a manner similar to 
that of the solutions of system (1.1) in the neighbourhood of the corresponding pointAi. 

After substituting expressions (4.5) into relation (4.2), we find the components of the force 

Fx mf~xXY c ~o = + O y X p  - ~ ( ~  - X)] (x ~ y, X ~ Y) 

guaranteeing that the objective of the control of the motion of the point mass Mwill be achieved. 

5. A P P E N D I X  

The motions of the point governed by Eqs (1.1) with the right-hand sides constructed in Section 3, as 
it moves from the initial position AI(0, 0) (Fig. 1) to its final position A3(1 , 1), are infinitely long. In 
that connection, consider the system of equations 
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2/3 
Yc = f l X(x ,  y),  29 = f~/ay(x, Y) (4.8) 

where 

f i  = a ix  + b iy  + ci (ai, bi, ci - cons t ;  i = 1, 3)  

and the straight line j~ = 0 intersects the s egmen tA iA2  of the straight line eoi = 0 and the arcA1A3 of 
the curve e03 = 0 at points of some fairly small e-neighbourhood of A1 = when i = 1 and of A3 when 
i = 3. In the interior of the domain bounded by the curves coi = 0, the system of equations (4.8) and 
the corresponding system of equations (1.1) define the same trajectories, but the point moves along 
them at velocities of different magnitudes. In particular, at points of the straight lines fl  = 0 and 
f3 = 0, which lie in the interior of the domain bounded by the curves c0i = 0, the coordinates of the 
velocities 2 and29 are zero, but these points themselves are not equilibrium points of system (4.8), since 

/3 1/3 the solution of the equation2 = x z isx = (t + C)/3, where C is a constant of integration. Consequently, 
the time taken by the representative point in the interior of that domain to move from a point of the 
straight liner1 = 0 to the straight liner3 = 0 is finite, while the solution presented above of the problem 
formulated in Section 2 may be used to solve the problem of finding a control force that will steer the 
point mass in a finite time, without leaving f~, from a given initial position M0 on the straight line 
ft  = 0 in a fairly small neighbourhood of A1 to a final position Mk, which is a point of the straight line 
f3 = 0 in a fairly small neighbourhood of A3; moreover, that is done in such a way that the initial and 
final velocities of the controlled motion of the point are zero. 

6. C O N C L U S I O N  

There are further advantages in using the method proposed in this paper to solve the problem formulated 
in Section 2: 

(1) The right-hand sides of Eqs (1.1) may include arbitrary functions (known as Yerugin functions) 
which do not affect the topological structure of the required systems of equations of type (1.1) and may 
be used to impart additional properties to the motions of the controlled objects they describe. 

(2) Equations (1.1), which describe the objective of the motion, may be integrated numerically without 
having to use inequalities to formulate the conditions for the controlled point to be situated in the domain 
of admissible positions and to verify those conditions at each step of the integration, since Eqs (1.1) 
define a vector field of velocities that guarantees that the objective is achieved from any admissible 
position of the point; in addition, one obtains feedback information from the coordinates: 

Remarks. 1. The problem considered (Section 2) may be complicated by assuming that the domain g2 contains 
obstructions, bypassing which the point M must move from an initial position to a final position while satisfying 
prescribed conditions (Fig. 3); the theoretical assumptions necessary to that end, as well as algorithms, were described 
in [11]. 

2. The solution of the problem of the directed motion of a point may be used in combination with the decomposition 
method [16] for the analytical construction of equations for the programmed motions of the modules of manipulating 
systems and to synthesize controls which guarantee the implementation of those motions. 

A3 

A1 

Fig. 3 
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